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The theoretical investigation of double-slit dynamical X-ray diffraction in ideal

crystals shows that, on the exit surface of crystals, interference fringes similar to

Young’s fringes are formed. An expression for the period of the fringes was

obtained. The visibility of the fringes depending on temporal and spatial

coherent properties of the incident beam is studied. The polarization state of the

incident beam also affects the visibility of the fringes, which in turn depends on

the size of the slits. The deviation from Bragg’s exact angle causes a shift of the

fringes and can also affect the amplitude of the intensity. One of the parameters

on which the visibility of the fringes depends is the source–crystal distance. The

proposed scheme can be used as a Rayleigh X-ray interferometer. Use of the

scheme as a Michelson X-ray stellar interferometer is also possible.

1. Introduction

The dynamical diffraction of X-rays in crystals essentially

depends on the degree of perfection of the crystals and on the

parameters of the incident beam. The diffraction of mono-

chromatic spatially inhomogeneous beams is described by

Takagi’s equations (Takagi, 1969). The general method for

solving these equations was given by Slobodetskii et al. (1968),

Authier & Simon (1968) and Uragami (1969). The equations

of dynamical diffraction are applicable in cases where the

wavelength is much smaller than the characteristic size of the

inhomogeneity. The diffraction of an X-ray beam restricted by

a receiving slit has been studied theoretically and experi-

mentally (Kato & Lang, 1959; Homna et al., 1966; Kato,

1961a,b, 1968a,b; Authier et al., 1968; Hart & Milne, 1968;

Kohra & Kikuta, 1968; Slobodetskii & Chukhovskii, 1970).

It is interesting to investigate the dynamical diffraction of

an incident wave which is restricted by two slits. The inter-

ference fringes which are observed when the sizes of the slits

are small compared with the distance between their centres

and when the distance between the centres is small compared

with the distance from the plane of the slits to the observation

point are called Young’s fringes. This is well known in optics

(Born & Wolf, 2002). The corresponding experiment is called

Young’s double-slit experiment. Investigations in the X-ray

region of the classic and virtual Young’s experiment are

presented by Leitenberger et al. (2001, 2004), Yamazaki &

Ishikawa (2003), Leitenberger & Pietsch (2007), Tsuji et al.

(2009) and Isakovic et al. (2010).

In this paper the theoretical investigation of X-ray double-

slit Laue symmetric diffraction in ideal crystals using Green’s

function formalism is presented (Fig. 1). Based on the

obtained equations it is shown that, on the exit surface of the

crystal, fringes similar to Young’s fringes in optics are formed.

For the intensity distribution an analytical approximation is

given. The results of this approximation are compared with the

solution of numerical calculations. A formula for the period of

the interference fringes is obtained. The visibility of the

interference pattern is theoretically studied depending on the

monochromatization degree of the incident beam and on the

size of the source [the temporal coherence and spatial

coherence, respectively, which are usually related to the

longitudinal and transverse coherence lengths (Als-Nielsen &

McMorrow, 2001)], the sizes of the slits, the deviation from

Bragg’s exact angle, the source–crystal distance and the state

of polarization. For the scheme shown in Fig. 1, owing to the

formation of the Borrmann triangle, the region of interference

is larger than that for the classic X-ray double-slit experiment.

Figure 1
Scheme of double-slit dynamical diffraction of X-rays. 2c: distance
between the centres of the slits; OXZ: the coordinate system. O is
situated in the middle of the two slits, the OX axis is antiparallel to the
diffraction vector h and OZ is perpendicular to the entrance surface. RP:
reflecting planes.



The scheme presented in Fig. 1 can be considered as an

interferometer with division of the wavefront (Rayleigh

interferometer). By placing a specimen in the way of one of

the interfering beams and by measuring the shift of the

interference fringes one can determine the refractive index of

the specimen (Fig. 2). By using the scheme given in Fig. 1 the

angular distance of two incoherent sources can be determined

as in the case of the Michelson stellar interferometer in optics

(Fig. 3).

2. Theory

The electric field of an arbitrary non-polarized incident wave

can be described by the expression Eið!; rÞ expðiKrÞ, where Ei

is the slowly varying amplitude, ! is the frequency corre-

sponding to wavelength �, and K is the carrying wavevector

of the incident beam. The direction of K is independent of

wavelength and K2 = ð2�=�Þ2. The glancing angle formed by K

and the entrance surface of the crystal is �=2� �, where � is

the angle between the wavevector K and the reflecting atomic

planes (Fig. 1). A field of any frequency in the crystal is

presented by the two-wave approximation as

E ¼ E0 expðiK0rÞ þ Eh expðiKhrÞ;

where K0 and Kh = K0 þ h are the wavevectors of the trans-

mitted and diffracted fields, respectively, which for a certain

wavelength satisfy Bragg’s exact condition K2
0 = K2

h = k2 =

ð2�=�Þ2, h is the reciprocal-lattice vector satisfying the

reflection condition h = � hj jex, where hj j = 2k sin �0ð�Þ,
k ¼ 2�=�, �0ð�Þ is the Bragg exact angle for the wavelength �,

and ex is the unit vector along the coordinate x. In the

following, �0ð�Þ ! �0 (with the exception of x3.1.2). It should

be noted that hj j is independent of the wavelength. E0 and Eh

are the amplitudes of the electric fields of the transmitted and

diffracted wave, respectively, for the same wavelength.

The amplitudes satisfy Takagi’s equations (Takagi, 1969)

and continuity conditions on the entrance surface of the

crystal (z = 0). For any state of the polarization it follows from

the continuity condition on the entrance surface that

E ið!; rÞ expðiKrÞ = E0ð!; rÞ expðiK0rÞ and, therefore, the

amplitude E0 on the entrance surface is

E0 ¼ E i exp ik cos �0��xð Þ; ð1Þ

where �� = � � �0 is the deviation from the exact Bragg angle

for given �. The amplitude of the diffracted wave in the crystal

in the symmetric Laue case can be presented by means of

Green’s function of dynamical diffraction as a convolution

along the entrance surface of the crystal,

Eh ¼
Rþ1
�1

Gðx� x 0; zÞE iðx 0Þ exp ik cos �0��x 0ð Þ dx 0; ð2Þ

Gðx; zÞ ¼ ik�hCJ0 � cot �0 z2 tan2 �0 � x2
� �1=2

=�
h i

� exp ik�0z=2 cos �0ð ÞH z tan �0 � xj jð Þ=4 sin �0 ð3Þ

(Slobodetskii & Chukhovskii, 1970; Authier, 2001; Pinsker,

1982). Here �0, �h, �h are the crystal dielectric susceptibility

Fourier components corresponding to the zero and h reflec-

tions. Without loss of generality, for definiteness, it is assumed

that �h ¼ �h, �hr = �hr < 0, �hi = �hi > 0, �hi� j�hrj, �hi ffi �0i >

0. HðxÞ is the step function: HðxÞ= 1 if x > 0, HðxÞ= 0 if x < 0; J0

is the zero-order Bessel function, � = � cos �0=Cð�h�hÞ
1=2 and

C is the polarization factor: C = 1 for � polarization and C =

cos 2�0 for � polarization. The real part of �, i.e. �r = Re � ’
� cos �0=Cj�hrj is the extinction length and �i = Im � ’
�r�hi=j�hrj is concerned with absorption in the crystal. For the

scheme given in Fig. 1,

Eh ¼
R
1

Gðx� x 0; zÞE iðx 0Þ expðik cos �0��x 0Þ dx 0

þ
R
2

Gðx� x 0; zÞE iðx 0Þ expðik cos �0��x
0Þ dx 0; ð4Þ

and the indexes 1 and 2 at the signs of the integrals mean

integration over the first and the second slits accordingly.

3. Double-slit dynamical diffraction

Let us consider the scheme given in Fig. 1. X-rays originating

from a point source and passing through two slits fall on the

crystal. The widths of the slits in the diffraction plane along the

surface of the crystal are equal to each other and are equal to

2a. The distance A1B2 from the left edge of the first slit to the

right edge of the second slit is 2ðcþ aÞ, i.e. the distance

between the centres of the two slits is 2c.
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Figure 2
Scheme of the Rayleigh X-ray dynamical diffraction interferometer.
Sp: specimen.

Figure 3
Scheme of the Michelson X-ray dynamical diffraction stellar interfer-
ometer.



The boundaries of the regions, which are shown in Fig. 1, are

formed by the lines A1A0, A1B etc., which are parallel to the

directions of the transmitted and diffracted waves.

According to (4), the diffracted wave in the crystal is

formed in the region A0B0B2A1. The amplitudes of the waves

in the shaded triangle B1A2Q are equal to zero. An inter-

ference pattern of two slits is formed in the range Q1AB

(where both slits contribute to the amplitude of the diffracted

wave with their whole widths 2a) and is observed in the region

AB of the exit surface of the crystal. In the parabolic

approximation the amplitude of the incident wave for any

polarization state (� or �) and for any frequency is

E i
¼ A exp ikx2 cos2 �=2Ls

� �
=Ls

� A expðikx2 cos2 �=2LsÞ; ð5Þ

where Ls is the source–crystal distance. The amplitude Eh can

be obtained by inserting (5) into (4). The expression for the

amplitude is a coherent sum of two amplitudes Eh1 and Eh2.

Eh1 is the amplitude of the diffracted wave emerging from slit

1 and Eh2 is that emerging from slit 2. Thus,

Eh ¼ Eh1 þ Eh2; ð6Þ

and

Eh1 ¼ A
R�cþa

�c�a

Gðx� x 0; zÞ exp ikx 0 2 cos2 �=2Lsð Þ

� exp ik cos �0x 0��ð Þ dx 0; ð7Þ

Eh2 ¼ A
Rcþa

c�a

Gðx� x 0; zÞ exp ikx 0 2 cos2 �=2Lsð Þ

� exp ik cos �0x 0��ð Þ dx 0: ð8Þ

3.1. Infinitely narrow slits (two coherent point sources on the
entrance surface of the crystal)

The slits in Young’s ideal experiment are considered as

infinitely narrow and it is assumed that c� a. In the case

of X-ray diffraction the slits can be regarded as infinitely

narrow if a� � tan �0=�. This follows from (3), (7) and (8).

In (7) and (8), Green’s function is almost constant if

a� � tan �0=�. The difference between the quadratic phase

of expðikx 0 2 cos2 �=2LsÞ in the centre of the second slit and the

right edge B2 is approximately equal to kac cos2 �=Ls. The

quadratic phase in (8) can be considered as a constant if

kac cos2 �=Ls � 2�, i.e.

Ls � kac cos2 �=2�: ð9Þ

The variation of the linear term of the phase in (8) from the

left edge A2 of slit 2 to the right edge B2 is k cos �0ð2aÞ��. This

term can be considered constant if jk cos �0ð2aÞ��j � 2�.

Therefore,

��j j � �=2a cos �0: ð10Þ

The same conditions (9) and (10) and the corresponding

estimates are also true for slit 1. Then, the amplitude in the

case of two infinitely narrow slits (two coherent point sources

placed at the points �c and c) can be rewritten using (6), (7)

and (8) as

Eh ¼ ð2aÞA Gðxþ c; zÞ exp �ikc cos �0��ð Þ
�

þ Gðx� c; zÞ exp ikc cos �0��ð Þ
�

expðikc2 cos2 �=2LsÞ:

ð11Þ

For the distribution of the intensity on AB in the vicinity of the

point x = 0 (the middle of AB) an approximate expression can

be derived. Let us assume that

z tan �0 � x	 cj j ð12Þ

and

�z=�r � 1: ð13Þ

As is well known, the asymptotic behaviour of the Bessel

function J0ðxÞ in the case of jxj � 1 is

J0ðxÞ ¼ ð2=�xÞ1=2 cosðx� �=4Þ: ð14Þ

Using the conditions (12) and (13), the asymptotic presenta-

tion (14), the identity cosðx� �=4Þ = fexp½iðx� �=4Þ
 +

exp½�iðx� �=4Þ
g=2, as well as the approximation

½z2 tan2 �0 � ðx	 cÞ
2


1=2
’ z tan �0½1� ðx	 cÞ

2=2z2 tan2 �0
,

the following expression can be obtained from (11),

Eh ¼ i�hCð2aÞA 2�=�2z
� �1=2

exp ik�0z=2 cos �0ð Þ

� exp i�0ð Þ cosð�þÞ þ exp �i�0ð Þ cosð��Þ
� �

� exp ikc2 cos2 �=2Ls

� �
: ð15Þ

The following notations in (15) are used: �h = k�h=4 sin �0,

�0 = ð�z=�Þ � ½�ðx2 þ c2Þ=2�z tan2 �0
 � �=4; �	 =

ð�xc=�z tan2 �0Þ 	 kc cos �0��.
As � is a complex quantity, the same is also true for �0 and

�	. The absorption near the middle of AB, from x = 0 to

jxj � c, is associated with �0i in the term expðik�0z=2 cos �0Þ

and with �i which can be taken into account only in

expð	i�0Þ in the term expð	i�z=�Þ [according to conditions

(12) and (13)]. As a result, for the absorption factor one

obtains exp½�k�0ið1� C�hi=�0iÞz= cos �0
. Thus, in this region,

the effective linear absorption coefficient coincides with that

in the case of the plane incident wave (Authier, 2001; Pinsker,

1982): �e = �ð1� C�hi=�0iÞ, where � = k�0i is the normal

linear absorption coefficient and the sign� corresponds to the

sign 	 in the term expð	i�z=�Þ. Thus, the first term in (15)

corresponds to the weakly absorbing mode [with the effective

linear absorption coefficient �e = �ð1� C�hi=�0iÞ < �] and the

second term corresponds to the strongly absorbing mode [with

the effective linear absorption coefficient �e =�ð1þ C�hi=�0iÞ

> �]. On the other hand, for the weakly absorbing mode, �e� =

�ð1� �hi=�0iÞ < �e� = �ð1� cos 2�0�hi=�0iÞ. In the case

�z � 1, only weakly absorbing modes of both polarizations

can be taken into account, whereas in the case of sufficiently

large �z� 1 only the weakly absorbing mode of � polariza-

tion can be taken into account. For the weakly and strongly

absorbing modes the maxima of the intensity distribution,

according to (15), are defined from the conditions
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ð�xc=�rz tan2 �0Þ 	 kc cos �0�� ¼ n�; n ¼ 0;	1;	2 . . . :

ð16Þ

The upper sign ‘þ’ on the left-hand side of (16) corresponds to

the weakly absorbing mode. From (16) it follows that for both

modes the periods are the same and are given as

D ¼ �rz tan2 �0=c: ð17Þ

Meanwhile the interference fringes of the weakly and strongly

absorbing modes are shifted from the centre (x = 0) by

�x ¼ �kcD cos �0��=�: ð18Þ

The interference fringes obtained here are similar to Young’s

fringes in optics.

3.1.1. The influence of polarization on the interference
pattern. According to (17) and (18) the periods D of Young’s

fringes for � and � polarizations and the corresponding shifts

�x are different owing to the difference between �r� =

� cos �0=j�hrj and �r� = �r�= cos 2�0. Furthermore, the nota-

tions D� = �r�z tan2 �0=c and D� = D�= cos 2�0 are used for the

periods of Young’s fringes for � and � polarizations, respec-

tively. The intensity of an unpolarized diffracted wave is the

sum of the intensities of both polarizations. The intensities of

strongly absorbing modes can be neglected (�z � 1). By using

(16) and taking into account only weakly absorbing modes one

obtains

Ih ¼ Ih� þ Ih�

’ 2ð2aÞ
2

Aj j2 �h

�� ��2 ��

�� ��=�2z
� �

� cos2 kc�� cos �0 þ �x=D�ð Þ
�

þ cos 2�0 cos2 kc�� cos �0 þ �x=D�

� ��
: ð19Þ

The imaginary parts of the arguments of cosines are ignored.

The expression (19) can be written as

Ih ¼ ð �h

�� ��2 ��

�� ��=�2zÞð2aÞ
2

Aj j2fð1þ cos 2�0Þ

þ ð1þ cos 2�0Þ cos½2kc�� cos �0 þ 2�xð1=D� þ 1=D�Þ=2


� cos½�xð1=D� � 1=D�Þ


� ð1� cos 2�0Þ sin½2kc�� cos �0 þ 2�xð1=D� þ 1=D�Þ=2


� sin½�xð1=D� � 1=D�Þ
g: ð20Þ

The first term of (20) is constant. The third term is small since

cos 2�0 is close to 1. The second term is the main term. The

second term has the period ½ð1=D� þ 1=D�Þ=2
�1, which is

slightly different from the periods of � and � polarizations,

D� and D�. The intensity is modulated by the function

cos½�xð1=D� � 1=D�Þ
. The interference fringes disappear if

cos½�xð1=D� � 1=D�Þ
 = 0, i.e.

1� cos 2�0ð Þx=D� ¼ ð2nþ 1Þ=2: ð21Þ

The number of interference fringes between the two points of

disappearance is

N ¼ 1þ cos 2�0ð Þ=2 1� cos 2�0ð Þ: ð22Þ

3.1.2. Quasi-monochromatic radiation. The amplitudes of

different components of a quasi-monochromatic incident

beam are distributed in a small range, � 2 ð�m ���m,

�m þ��mÞ with j��=�j � 1. The wavelength �m corresponds

to the component with maximal intensity. From differentiation

of the Bragg formula one obtains

�0ð�Þ � �0ð�mÞ ¼ �� tan �0=�; ð23Þ

and therefore

��ð�Þ ¼ � � �0ð�Þ

¼ � � �0ð�mÞ þ �0ð�mÞ � �0ð�Þ

¼ ��ð�mÞ ��� tan �0=�: ð24Þ

Without loss of generality ��ð�mÞ = 0 and hence

��ð�Þ ¼ ��� tan �0=�: ð25Þ

From the condition (10) and the expression (25) it follows

��=�
�� ��� �=2a sin �0: ð26Þ

The shift of the interference pattern given by (18) is

�xð�Þ ¼ 	kcD cos �0�� tan �0=��: ð27Þ

From (17) it follows that D�;� = D�;�ð�Þ. Using (17) and (23)

the following expressions are obtained:

�D�ð�Þ ¼ D�ð�Þ ð1þ 2 cos2 �0Þ= cos2 �0

� �
��=�; ð28Þ

�D�ð�Þ ¼ D�ð�Þ ð1þ 2 cos 2�0Þ= cos2 �0 cos 2�0

� �
��=�: ð29Þ

Since j��=�j � 1 then j�D�;�ð�Þj � D�;�ð�Þ. Therefore the

dependence of the periods on � can be neglected. The

conditions of the disappearance of interference fringes can be

simply found. According to (18) the interference fringes

corresponding to �m ���m and �m þ��m are shifted with

respect to each other by 2kcD cos �0��m tan �0=��. If

the maximum of zero order of �m þ��m coincides with

the maximum of the first order of �m ���m, i.e.

2kcD cos �0��m tan �0=�� = D, the fringes disappear. There-

fore the condition of the high visibility of the fringes is

��=�
�� ��� ��=�

�� ��
cr
¼ �=2kc sin �0 ¼ �=2ð2cÞ sin �0: ð30Þ

Here, the subscript ‘cr’ denotes the critical value of j��=�j, at

which the interference fringes disappear.

3.1.3. Source with finite size (spatial coherence). The finite

size of the source can also affect the interference pattern. Let

us consider a source of size l (Fig. 4). In the diffraction plane

the source is a line perpendicular to the direction of the

incident beam. The variable � indicates the coordinates of the

point sources along the source. It varies from �l=2 to l=2. The

glancing angle between the direction of the incident beam and

the reflecting planes for a point source with coordinate � is

�ð�Þ = � � �=Ls. Therefore the deviation from Bragg’s exact

angle is

��ð�; �Þ ¼ �ð�� tan �0=�Þ � �=Ls: ð31Þ

As follows from (31) and (18), for a fixed � the incoherent

point sources with the coordinates � = �l=2 and � = l=2 form

sets of interference fringes shifted with respect to each other

by kc cos �0lD=�Ls. The interference fringes disappear when

Acta Cryst. (2010). A66, 660–668 Minas K. Balyan � Double-slit dynamical diffraction 663

research papers



kc cos �0lD=�Ls = D. Therefore, the condition for observation

of the interference fringes with high contrast is

l � �Ls=kc cos �0: ð32Þ

According to the Van Cittert–Zernike theorem (Born & Wolf,

2002), for homogeneous vacuum–slits and slits–vacuum media

one can estimate

l  0:16�Ls=kc cos �0: ð33Þ

In the Van Cittert–Zernike theorem, Green’s function of a

homogeneous medium is used, i.e. expðikRÞ=R, where R is the

distance between two points in the vacuum–slits and slits–

vacuum spaces. It is interesting to note that the estimates

[equations (32) and (33)] are almost the same, but in our case

the vacuum–slits and slits–crystal medium is not homo-

geneous. For establishment of any theorem in our case similar

to the Van Cittert–Zernike theorem it is necessary for the

slits–crystal space to use the appropriate Green function.

3.2. Determination of the refractive index of a specimen
(Rayleigh X-ray interferometer) and the angular distance
of two incoherent sources (Michelson X-ray stellar
interferometer)

The scheme given in Fig. 2 can be used for determination of

the decrement 	 of a specimen which is placed behind one of

the slits (as for the Rayleigh interferometer in optics). The

wave, passing the sample, placed in the way of slit 2, acquires

an additional phase �k	t, where t is the thickness of the

specimen. Therefore, instead of (18) (for weakly absorbing

mode) we have

�x ¼ �ðkcD cos �0��=�Þ þ k	tD=2�;

and the shift �xð	Þ, which is connected to the refraction in the

specimen, is

�xð	Þ ¼ k	tD=2�: ð34Þ

By measuring �xð	Þ the refractive index of the specimen can

be determined.

Using the scheme given in Fig. 3 makes it possible to

determine the angular distance of two incoherent sources (as

is done by means of the Michelson stellar interferometer in

optics). Let us consider two incoherent sources. Sources emit

plane waves (Ls !1) that form glancing angles �1 and �2

with the reflecting planes. The total intensity distribution,

according to (15) (the weakly absorbing mode), is

Ih ’ 1þ cos ð2�x=DÞ þ k cos �0ð��1 þ��2Þc
� �

� cos k cos �0ð��1 ���2Þc
� �

; ð35Þ

where ��1 = �1 � �0, ��2 = �2� �0. By variation of c, the

disappearance of the fringes can be achieved. For disap-

pearance of the fringes, the condition k cos �0 �1 � �2

�� ��c = �=2

must be fulfilled. Then, the angular distance can be deter-

mined:

�1 � �2

�� �� ¼ �=2k cos �0c: ð36Þ

3.3. Slits with finite size

The expressions (7) and (8) can be written in the form

Eh1;2 ¼ A
Ra
�a

Gðx	 c� x 0; zÞ exp ikðx 0 � cÞ
2 cos2 �=2Ls

� �

� exp ik cos �0ðx
0
� cÞ��

� �
dx 0; ð37Þ

where the upper sign corresponds to slit 1 and the lower sign

to slit 2. The expressions (37) cannot be integrated analyti-

cally. However, if the condition (13) is fulfilled, the asymptotic

presentation (14) of the Bessel function can be applied. For

the weakly absorbing mode one can find

Eh1;2 ¼ F1;2ðx; zÞ
Ra
�a

exp i�ðx	 cÞx 0=�z tan2 �0

� �

� expð�ikx 0c cos2 �=LsÞ expðik cos �0x 0��Þ dx 0;

where

F1;2ðx; zÞ ¼ iAð�h=2ÞCð2�=�2zÞ
1=2 expðik�0z=2 cos �0Þ

� expði�z=�Þ expð�i�=4Þ

� expð�ikc cos �0��Þ

� exp �i�ðx2
þ c2
Þ=2z� tan2 �0

� �

� expð�i�xc=�z tan2 �0Þ

� expðikc2 cos2 �=2LsÞ:

In the integrand, quadratic terms of the phases dependent on

x 0 are neglected (ka2 cos2 �=2Ls � �, a2=2 �j jz tan2 �0 � 1).

The remaining integrals correspond to the finite size of the

slits. After integrations we obtain

Eh1;2 ¼ F1;2ðx; zÞð2aÞ sin 
1;2=
1;2; ð38Þ

where


1;2 ¼ ka cos �0½�� � ðc cos �0=LsÞ

þ �ðx	 cÞ=k�z tan2 �0 cos �0
:

In the expressions of 
1;2 the difference between cos �0 and

cos � is neglected and for � only the real part �r can be taken

into account. From (38) and expressions for 
1;2 it follows that

the influence of the finite sizes of the slits can be neglected if
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Figure 4
Scheme of double-slit dynamical diffraction for a source with finite size.
s: X-ray source with finite size l.



ka cos �0 ��j j � �;

kac cos2 �0=Ls � �;

�ð xj j þ cÞa=cD� �:

ð39Þ

The third condition in (39) is fulfilled independently of x if

�ðjxmaxj þ cÞa=cD = �a=�r tan �0 � �. Here, jxmaxj = AB=2

(Fig. 1). The intensity distribution is given by the formula

Ih ¼ Eh1 þ Eh2

�� ��2: ð40Þ

If the conditions (39) are fulfilled, the slits can be considered

as infinitely narrow. The third condition of (39) in the region

jxj< c (particularly at x = 0) can be rewritten as �ca=cD =

�a=D� �, i.e. a� D. This means that for appearance of the

interference fringes the phase difference �a=D between the

centre of the slit and its ends must be less than �.

In general, the visibility of the fringes depends on the size of

the slits. The main features of the influence of the finite size of

the slits can be derived by analysing the behaviour of the

functions sin 
1;2=
1;2. Let us analyse the behaviour of these

functions neglecting the influence of absorption in their

arguments. According to (38) the maxima of the functions

sin 
1;2=
1;2 have coordinates

xmax 1;2 ¼ �c� ðkcD cos �0��=�Þ 	 kc2 cos2 �0D=�Ls: ð41Þ

Here, the upper sign corresponds to slit 1. The first two zeros

of the functions sin 
1;2=
1;2 have the coordinates

x01 ¼ 	ðcD=aÞ � c� ðkcD cos �0��=�Þ þ kc2 cos2 �0D=�Ls

ð42Þ

for slit 1 and

x02 ¼ 	ðcD=aÞ þ c� ðkcD cos �0��=�Þ � kc2 cos2 �0D=�Ls

ð43Þ

for slit 2. The 	 signs in (42) and (43) correspond to sin 
1;2 =

	�. The distance between the maxima �xmax = xmax 2 � xmax 1

is

�xmax ¼ 2cð1� kc cos2 �0D=�LsÞ ð44Þ

and does not depend on ��. If Ls = 1, �xmax = 2c. With a

decrease of Ls, �xmax decreases and �xmax > 0. The distance

�xmax is equal to zero when

Ls0 ¼ kc cos2 �0D=�: ð45Þ

In this case, xmax 1;2 = 0 if �� = 0. With a subsequent decrease of

Ls, j�xmaxj increases, but now �xmax < 0. The interference

occurs when the functions of the two slits have a region of

overlap. The size of the overlapping region is maximal when

the condition (45) is fulfilled. With increasing widths of the

slits the distance between the two zeros of the slits’ functions

decreases. Consequently, with increasing width of the slits the

area of overlap decreases.

Absorption introduces some corrections in the behaviour of

the functions (38). Owing to absorption and the influence of

quadratic terms, which are neglected in the phases of the

integrands in (37) near the edges of AB, the absolute values of

the coordinates of the first zeros of the separate slits’ functions

(37) and (38) are less than predicted by (42) and (43)

3.4. Example

Consider an example which illustrates the results obtained

for the Si(220) MoK� reflection (� ’ 0.7 Å, �0 = 10.6�, �r� =

36.6 mm). The following parameters of the slits and the crystal

are taken: 2c = 160 mm, 2a = 10 mm, z = 3 mm and the neces-

sary silicon data

�0r ¼ �3:162� 10�6; �0i ¼ 0:165� 10�7;

�hr ¼ � �hhr ¼ �1:901� 10�6; �hi ¼ � �hhi ¼ 0:159� 10�7

are taken from Pinsker (1982). For the chosen data, �z = 4.4,

and therefore only the weakly absorbing modes of both

polarizations can be taken into account.

In all the figures below, the intensity distribution is shown in

the region AB at the exit surface of the crystal (Fig. 1) and, as a

unit of intensity, the intensity of one of the polarization

components of the incident unpolarized beam is taken, I0 =

I i
0=2 = jAj2, where I i

0 is the intensity of the incident beam.

It is necessary to discuss all conditions of visibility of the

fringes. The condition (10) is similar to the first condition of

(39). For the case under consideration one can estimate from

(39) that for the visibility of the fringes of infinitely narrow

slits the fulfilment of the condition j��j � 7:2� 10�6 is

necessary. On the other hand, the temporal coherence length

is restricted by the conditions (26) and (30). However, if the

condition (30) occurs, the condition (26) is fulfilled auto-

matically. From the condition (30) the estimate j��=�j �
1:2� 10�6 is obtained. The second condition of (39) gives an

estimate of the collimation degree of the incident beam

concerned with the finite size of the slits. From (39) it follows

that Ls � 22 m. The third condition of (39) is not satisfied

near the edges of AB as a=�r� tan �0 = 0.73.

The spatial coherence, i.e. the effect of the source with finite

size, is estimated from (32). If the size of the source is l =

30 mm, then from (32) we obtain Ls � 70 m. Thus, the beam

must be collimated so that the collimation degree corresponds

to Ls � 70 m. According to (22), the modulation, owing to

polarization, arises when the number of fringes is N = 14. The

period is a function of the observation depth. At z = 3 mm, for

the period of both polarizations the values D� = 48.3 mm, D� =

51.8 mm can be obtained [see formula (17)]. Fig. 5 shows that

the main obtained results are consistent with the numerical

calculations. It also shows the modulation of the fringes owing

to summation by polarizations. The results of numerical

calculations are in good agreement with those obtained from

(17).

As has been shown above, the interference fringes disap-

pear when j��=�j = ��=�
�� ��

cr
= 1:2� 10�6 [according to (30)].

This is shown in Fig. 6(a). For the source with finite size, the

fringes disappear for the distance Ls cr = kc cos �0l=� = 70 m

[formula (32)]. The numerical calculations (Fig. 6b) agree with

this result.
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According to Fig. 7 the approximations for separate slits

[formula (38)] give a result very close to the results obtained

by numerical calculations [formula (37)].

The intensity distributions of the interference fringes

corresponding to the cases in Figs. 7 and 8(a) are shown in

Figs. 5 and Fig. 8(b). Comparison of Figs. 8(b) and 5 shows that

the interference fringes disappear for the slits with the larger

widths. The region of overlap of the slits’ functions for Fig.

8(a) is small. In Fig. 9(a) it is seen that the slits’ functions are

maximally overlapped for Ls = kc cos2 �0D=�. Comparison of

Figs. 8(b) and 9(b) shows that at this distance the interference

pattern appears again. The number of fringes in Fig. 9(b) is

smaller in comparison with the case when 2a = 10 mm because

the half-width of the slits’ functions are smaller in the case

when 2a = 45 mm.

Finally, let us estimate the angular distance between two

incoherent sources, which can be determined by means of

the Michelson dynamic diffraction stellar interferometer.

According to (37), j�1 � �2j= 0:0500. Since the distance c can be

taken greater, the angular distance can be measured with

greater accuracy.
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Figure 6
(a) Intensity distribution for quasi-monochromatic radiation. ��=� =
ð��=�Þcr = 1:2� 10�6. Numerical calculations are based on formulae (7)
and (40) with subsequent integration of intensity by �� and polarizations.
The intensity distribution on � of the incident beam is considered
constant. (b) Interference fringes for a source with finite size l = 30 mm in
the diffraction plane. Ls = Ls cr = 70 m. Numerical calculations are based
on formulae (7), (8) and (40) with subsequent integration of intensity by �
and polarizations.

Figure 7
Intensity distributions of separate slits (Ls = 1, �� = 0, �� = 0,
� polarization) obtained by numerical calculations on the basis of
formula (37) and the intensity distributions obtained by means of the
approximated formula (38).

Figure 8
(a) The intensity distributions for separate slits. � polarization, plane
monochromatic wave, �� = 0, 2a = 45 mm. Numerical calculation by
formula (37). (b) Corresponding double-slit interference fringes.
Numerical calculation.

Figure 5
Intensity distribution in the region AB for a plane incident unpolarized
monochromatic wave (Ih = jEh� j

2 + jEh�j
2, Ls = 1, �� = 0). Numerical

calculations are based on the formulae (7), (8) and (40).



4. Conclusions

4.1. Results

In this paper the following results have been obtained.

(i) The double-slit dynamical diffraction of X-rays in perfect

crystals is theoretically investigated. It is shown that inter-

ference fringes are formed on the exit surface of the crystal.

These fringes are similar to Young’s fringes and the suggested

scheme is similar to Young’s double-slit experiment. Formulae

for the period and for the intensity distribution of the inter-

ference fringes are obtained.

(ii) The influence of various factors on the characteristics of

the interference fringes is investigated.

(iii) An example of theoretical results is considered for

illustration. The numerical calculations agree with theoretical

predictions.

4.2. Applications and further developments

The following applications and further developments are

pointed out.

(i) The double-slit dynamical diffraction scheme can be

used as an interferometer with a wavefront division (Rayleigh

X-ray interferometer; Fig. 2). It is possible to determine the

refractive index of a specimen which is placed in the path of a

wave emerging from one of the slits.

(ii) The proposed scheme can be used as a Michelson X-ray

stellar interferometer for measuring the angular distances

between two incoherent sources (Fig. 3). Using the scheme

given in Fig. 3 in X-ray astronomy is also possible.

(iii) The determination of localized defects in the crystal can

be one of the applications of the scheme shown in Fig. 1. If one

of the beams passes through the region of the crystal

containing the localized defects (dislocations, plane defects

etc.), the interference pattern must change. In principle, by

analysing the recorded changes in the interference pattern it is

possible to conduct at least a qualitative analysis of crystal

defects. The theoretical and experimental investigation of

double-slit dynamical diffraction in elastically deformed

crystals is also interesting, e.g. bent crystals, crystals under the

influence of a temperature gradient or ultrasonic waves etc.

(iv) The double-slit experiment in optics is one of the

simplest ways to record holograms (Hariharan, 2002). It is

obvious that the scheme given in Fig. 1 is a way of recording an

X-ray hologram of a point source. The subsequent recon-

struction of the image by visible light is also possible. Thus, a

further theoretical and experimental development of the

proposed scheme could be X-ray holography. By placing an

object in one of the slits it is possible to record an X-ray

hologram of the object. Such a method in X-ray optics is

similar to Fourier lensless holography in optics.

(v) The theoretical and experimental investigation of

double-slit dynamical diffraction also seems to be interesting

in the case of Bragg geometry of diffraction.

4.3. Possibility of experimental realization

According to the estimates of the monochromatization

degree [formula (30)] and the source size [formula (32)] of the

incident beam it is more convenient to use a synchrotron

radiation source rather than a laboratory source of X-rays.

One of the possible experimental setups for incident beam

formation could be the same as that of beam formation given

by Yamazaki & Ishikawa (2003), where interference fringes of

a three-block X-ray wavefront-division Laue interferometer

have been demonstrated. The experimental setup for incident

beam preparation has the following components: double-

crystal monochromator + asymmetric cut crystal collimator.

The asymmetric collimator has an asymmetry factor from 1/50

to 1/10. For experimental realization of the double-slit dyna-

mical diffraction one must replace the three-block inter-

ferometer by the double slit + crystal system. It is possible that

the use of a laboratory X-ray source with the corresponding

asymmetric crystal collimator can provide an opportunity for

experimental investigations with two slits.

The author is grateful to Dr L. G. Gasparyan and Dr V. P.

Mkrtchyan for helpful discussions on the possibility of the

experimental realization of double-slit dynamical diffraction.
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